A continuum model for the orbit evolution of self-propelled ‘smart dust’ swarms

نویسندگان

  • Colin R. McInnes
  • C. R. McInnes
چکیده

A continuity equation is developed to model the evolution of a swarm of selfpropelled ‘smart dust’ devices in heliocentric orbit driven by solar radiation pressure. These devices are assumed to beMEMs-scale (micro-electromechanical systems) with a large areato-mass ratio. For large numbers of devices it will be assumed that a continuumapproximation can be used to model their orbit evolution. The families of closed-form solutions to the resulting swarm continuity equation then represent the evolution of the number density of devices as a function of both position and time from a set of initial data. Forcing terms are also considered whichmodel swarm sources and sinks (device deposition and device failure). The closed-form solutions presented for the swarm number density provide insights into the behaviour of swarms of self-propelled ‘smart dust’ devices an can form the basis of more complex mission design methodologies.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dynamical self-regulation in self-propelled particle flows.

We study a continuum model of overdamped self-propelled particles with aligning interactions in two dimensions. Combining analytical theory and computations, we map out the phase diagram for the parameter space covered by the model. We find that the system self-organizes into two robust structures in different regions of parameter space: solitary waves composed of ordered swarms moving through ...

متن کامل

Thermal and athermal three-dimensional swarms of self-propelled particles.

Swarms of self-propelled particles exhibit complex behavior that can arise from simple models, with large changes in swarm behavior resulting from small changes in model parameters. We investigate the steady-state swarms formed by self-propelled Morse particles in three dimensions using molecular dynamics simulations optimized for graphics processing units. We find a variety of swarms of differ...

متن کامل

Elasticity-based mechanism for the collective motion of self-propelled particles with springlike interactions: a model system for natural and artificial swarms.

We introduce an elasticity-based mechanism that drives active particles to self-organize by cascading self-propulsion energy towards lower-energy modes. We illustrate it on a simple model of self-propelled agents linked by linear springs that reach a collectively rotating or translating state without requiring aligning interactions. We develop an active elastic sheet theory, complementary to th...

متن کامل

Micro-to-Macro: Astrodynamics at Extremes of Length-scale

This paper investigates astrodynamics at extremes of length-scale, ranging from swarms of future ‘smart dust’ devices to the capture and utilisation of small near Earth asteroids. At the smallest length-scales families of orbits are found which balance the energy gain from solar radiation pressure with energy dissipation due to air drag. This results in long orbit lifetimes for high area-to-mas...

متن کامل

The Temperature and Mass Effects on Dust Grain Electrical Potential in Dusty Plasma

By orbit-limited motion (OLM) theory and the kinetic model, currents carried by electronsand ions on the dust grain are obtained and the effects of temperature and drift velocity of ions on thedust grain electrical potential are considered. The calculations were performed for finding the role of densities of dust grains and ions on the dust grain electrical potential which is the ma...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016